

 IP-ESC'09 Conference – December 1-3, 2009 1

IP-ESC’09

DDGEN: An Automated Device Driver Generation Tool for Embedded Systems

Sandeep Pendharkar, Venugopal Kolathur

Vayavya Labs, Belgaum, India

Abstract

This paper describes a methodology for automatically

generating device drivers for embedded systems.

We formally specify the device behavior and

attributes in an input specification called DPS

(Device programming sequence). Software

architecture considerations are similarly captured in

another specification called RTS (Run time

specification). Our tool, DDGEN takes both these

specifications as input and generates a full-fledged

device driver code for the target operating system. In

this paper, we discuss DPS, RTS and the DDGEN

synthesis engine. We also argue about the

productivity benefits resulting due to the increased

level of abstraction and effective separation of the

hardware and the software concerns.

1. Introduction

A typical embedded system project is characterized

by very strict and demanding schedule requirements.

System designers have to regularly re-design both the

hardware as well as the software for newer versions

of the product. It is a well-acknowledged fact that in

modern embedded systems, software development

takes more time than the hardware/IC design.

 On the software side, device driver development is

often the bottleneck. It is inherently error-prone and

complex due to the need for thorough knowledge

about the innumerable peripherals that exists in a

typical embedded system. Writing of high quality,

optimized device drivers is difficult and time

consuming. For example, the DM355 Digital

Multimedia SOC from TI has around 18 peripherals

and the Board Support Package[8] is approximately

50,000 lines of code.

.

This problem is further exacerbated by the fact that

the communication between the hardware and the

software teams is mostly informal in the form of data

sheets, spreadsheets or emails.

The embedded system space is also characterized by

a plethora of operating systems like Linux, VxWorks,

Windows CE, Windows Mobile, Symbian, Micrium,

QNX to name a few. Thus device drivers often need

to be written for multiple operating systems. The set

of interfaces or APIs (typically known as the driver

model) that the driver exposes to the upper levels of

the embedded software also varies depending upon

the device. Often, multiple driver models exist for a

given device class. For example Linux has four

different kinds of driver models for video devices viz.

frame buffer, direct frame buffer, Video-for-Linux

and OpenGL.

To address the above mentioned complexities, we

propose a domain specific language (DSL) called

DPS(Device Programming Sequence) to capture the

device attributes and behavior. Similarly, the various

software architecture and run-time considerations are

captured in another specification called RTS(Runtime

Specification). A corresponding tool, DDGEN

compiles this DPS specification and generates the

device driver after analyzing the RTS input.

Fig (1)

DPS formalizes the communication between the

hardware and software team. It essentially captures

all the relevant aspects (registers, interrupts, fifos,

programming sequence etc.) of a given device. As

shown in fig (1), we propose that DPS be written by

the hardware(IC) team. The RTS should be designed

by the actual device driver developer. The RTS

DPS

RTS

IC team

SW Team

DDGEN Driver in

C

 IP-ESC'09 Conference – December 1-3, 2009 2

captures the operating system, the driver model and

other software aspects like synchronization, software

buffering, interrupt handling mechanism etc. Our

methodology effectively separates the hardware and

the software concerns. By raising the abstraction

level, it enables thinking in the “problem domain”

than the “implementation domain”.

We discuss related work and approaches in the next

section. Section 3 elaborates on the DDGEN

framework. Our results are captured in Section 4. We

conclude and discuss future work in Section 5.

2. Related Work

A variety of approaches have been proposed in the

past to address some of the complexities mentioned.

Devil[5] primarily describes an abstraction for

capturing register access including bit-level

operations and generates a library of register access

functions. HAIL[1] is similar to Devil but introduces

an invariant specification and thus enables generation

of debug code to catch various bugs. HAIL also

addresses the problem of handling various bus

structures. Thibault et al[6] introduce GAL – a

domain specific language for video drivers. Note that

the underlying concept and approach of designing a

domain specific language is valuable. But GAL is

essentially restricted to the video domain only.

Wang et al [4] capture device specification in terms

of register programming, state machines for transition

between device states and core functions that get

synthesized in C for a virtual environment. This

virtual environment is manually mapped to a

particular target platform. Note that in our approach

DPS allows capturing of the device specification and

transition between device states as well. Our

approach directly synthesizes C code for the target

platform and environment. While virtual environment

enables reuse, we believe it is not be scalable for the

innumerable number of operating systems in the

embedded systems domain.

Several commercial tools like Bitwise[3] exists as

well to read register specification in some form and

generate the low level register access routines in C

but they do not generate a complete device driver for

a given operating system.

Note that RTS in our approach allows capturing of

the software architecture and decisions to a very fine

level of granularity and this is noticeably absent in all

of the previous approaches. Except for [5] in some

manner, none of the previous attempts effectively

separate the hardware (device) concerns from the

software concerns.

3. DDGEN Framework

In this section, we describe the input specifications

viz. DPS and RTS using a UART device as an

illustrative example. Note that some specific aspects

of DPS are explained using a USB device controller

as a reference. We then describe the driver generation

process by the synthesis engine of DDGEN.

3.1 DPS

DPS is composed of several sections known as

specifications. It is a formal mechanism to capture a

typical device data sheet. As specified earlier, we

propose that the IC team creates the DPS for a given

device. Some of the specifications common across all

the device classes are:

 device_spec

 register_spec

 interrupt_spec

 fifo_spec

 interrupt_spec

 features

Note that in some cases, DPS also consists of

specifications which are very specific to a particular

device class.

device_spec:

Fig (2)

The device_spec captures the name of the device

and the class of the device. DPS has certain

predefined classes like SERIAL,

BUS_CONTROLLER, NETWORK, AUDIO etc.

DEVICE_SPEC

{

 device_name = AT91SAM9263_USART;

 device_class = SERIAL;

}

 IP-ESC'09 Conference – December 1-3, 2009 3

DDGEN infers the target driver model from

device_class and the corresponding attributes

like operating system and driver_model in

the RTS.

Register_spec:

Fig (3)

The register_spec captures all the registers of

the device . For each register, it also captures the size

of the register, the offset at which it is placed from

the base address and its read/write type as well. DPS

also allows logical grouping of bits within a register

into sub-fields. All the above mentioned attributes

can potentially be specified for each such field as

well. The value of most of the attributes in other

specifications is typically specified in terms of these

field names. DDGEN automatically generates

read/write access routines (macros in C) for all these

registers and their fields. The appropriate bit masks

required for these read/write routines are generated as

well.

Features:

Fig (4)

Feature Specification is the only non-structural

specification in DPS and is meant to capture the

programming sequences for the device. It allows

declaring of local variables, arguments to the feature

and return value as well.

Arithmetic operations and conditional execution is

also allowed. These operations can be directly

specified on register fields. Features also contain

certain constructs like poll and wait which enable

effective capture of a sequence. Fig (4) shows a

feature named device_read which reads data

from the RBR register only after the corresponding

status field dr indicates its availability.

device_read and device_write are keywords

in DPS thus conveying specific information to

DDGEN. These features correspond to reading and

writing data from a device. Similarly init is a

keyword feature as well and corresponds to

configurations and sequences required for

initialization of the device. Apart from these features

having a special meaning, DPS also enables writing

of any explicit features.

DDGEN directly translates these features to C

functions. The synthesis process is explained in

details in section 3.3.

Interrupt_spec:

Fig (5)

The interrupt_spec captures the interrupts

supported by the device. Fig(5) above shows the

read/receive interrupt for a UART. Each interrupt is

identified by a register field and the corresponding

value in that field indicating the occurrence of the

interrupt. Thus „1‟ in the register field IIR.IntID

indicates that a read interrupt has occurred. Since

device_read is a pre-defined keyword, DDGEN

CONTROL_REGISTERS {

 LCR [8] @ 1 {

 type = RW;

 field wls <0:1> {

 type = RW;

 clearing_mode = DC;

 value_on_reset = 0;

 }

 . . .

}

FEATURE device_read {

 OUTPUT char data;

 poll LSR.dr until

 (LSR.dr == 1) data = RBR

 ERROR (LSR.oe == 0x1 ||

 LSR.pe == 0x1 ||

 LSR.fe == 0x1 ||

 LSR.bi == 0x1);

}

INTERRUPT_SPEC {

 IIR.IntID(1){

 int_type = device_read;

 enable_field = IER.erbfi(0x1);

 disable_field= IER.erbfi(0x0);

 clear_field = AUTO_CLEAR ;

 }

 …

 }

 IP-ESC'09 Conference – December 1-3, 2009 4

automatically infers that this read interrupt has to be

handled by the corresponding device_read

feature. This particular interrupt is enabled by writing

„1‟ to the register field IER.erbfi. The register

fields for disabling and clearing this interrupt are

specified as well. DDGEN automatically generates

routines for enabling/disabling and clearing each of

the interrupts specified in interrupt_ spec.

Note that DPS also allows an explicit feature to be

specified for each interrupt as well. DDGEN

automatically inserts a call to the corresponding C

function in the Interrupt Service Routine(ISR) that is

generated.

Device-class specific specification

As mentioned earlier, apart from the generic

specifications mentioned above, DPS also consists of

a few specifications which are very specific to a

particular device. Given below is one such example

for a USB device controller.

Fig(6)

The usb_device_spec essentially captures the

relevant attributes for all the endpoints of a USB

device. Fig (6) above shows some of the

configuration details for the endpoint 0. Note that

UDP_FDR0 is the data register for this endpoint.

Each endpoint often supports multiple types of data

transfers (control, bulk, isochronous, interrupt). This

is captured by the supported_transfer_type

attribute. The register fields for configuring the

endpoint direction as well as enabling/disabling of

the endpoint are specified as well. Thus setting the

register field UDP_CSR0.DIR to 0 indicates that the

host is ready to receive data from the device

controller. Similarly, setting CSR0.EPEDS to 1

automatically enables the endpoint 0.

Note that capturing the endpoint details in the above

manner enables DDGEN to automatically synthesize

the relevant USB device driver model across various

operating systems primarily because each

keyword/attribute has a specific intent associated

with it. In case of device-classes which do not have

such a custom specification, the relevant details are

specified as explicit features in DPS. The

corresponding C functions that get generated need to

be manually integrated with the driver model

synthesized by DDGEN.

3.2 RTS

As specified earlier, RTS (Runtime Specification)

enables the software team to focus purely on the

software considerations. At a broad level, RTS

captures the following aspects:

 Operating system and corresponding driver

model to be generated. For example Windows

CE allows “monolithic” or “layered” driver

architecture[9]. Similarly all controller devices

require a platform driver model[10] on Linux

2.6.11 onwards.

 Generation of asynchronous or blocking/non-

blocking APIs.

 Buffering model required in the software

 Coding styles and conventions being followed

 Support for re-entrancy and synchronization

mechanism between the main driver thread and

the interrupt handler.

We describe some of the RTS specifications in

further details:

Interconnect:

Fig(7)

BUS_SPEC {

 REG_ACCESS_TYPE = MEMORY_MAPPED;

 TRANSFER_MODE = PIO;

 BASE_ADDRESS = 0xFF8C000

}

USB_DEVICE_SPEC {

 …

 end_point 0 @ UDP_FDR0 {

 supported_transfer_type =

 control(UDP_CSR0.EPTYPE('b00)),

 bulk(UDP_CSR0.EPTYPE('b10),

 interrupt(UDP_CSR0.EPTYPE('b11));

 direction =

 IN(UDP_CSR0.DIR(0)),

 OUT(UDP_CSR0.DIR(1));

 enable =

 UDP_CSR0.EPEDS('b1);

 disable =

 UDP_CSR0.EPEDS('b0);

 … } }

 IP-ESC'09 Conference – December 1-3, 2009 5

The bus_spec defines the interconnect for the

device. Fig (7) indicates that the device registers are

memory mapped. REG_ACCESS_TYPE indicates

whether the registers are memory mapped or

accessed over an IO port. If the registers are

accessed over a bus like I2C or SPI, RTS allows

capturing of that information as well. The

bus_spec also captures the mode of data transfer –

either PIO or DMA. The base address of the device is

captured as well.

Interrupt Specification :

Fig(8)

This specification defines the manner in which the

Interrupt Service Routine needs to be implemented.

ISR_NO specifies the interrupt number used in

registering the ISR with the kernel.

ISR_DRIVER_SYNC specifies the synchronization

mechanism between the main driver thread and the

ISR. This is typically achieved using semaphores.

Note that global variables are typically used for

synchronization only if the underlying host

processor(on which the device driver is executed)

does not have any operating system on it.

3.3 Driver Synthesis

We briefly outline the DDGEN driver generation

process below:

 DDGEN automatically identifies the driver

registration mechanism and the synchronization

APIs to be used based on the target operating

system.

 DDGEN internally maintains a library of

templates. These templates are designed based

on various aspects like the operating system, the

device class, the driver model, and the API

behavior (asynchronous, blocking/non-blocking

etc.).

 Register access routines are generated based on

the attributes specified in the register_spec

in DPS and the reg_access_type specified

in the RTS

.

 DDGEN translates each feature specified in DPS

to a corresponding function in C. The pre-

defined features are like device_read,

device_write, init, finit are directly

mapped to the appropriate API in the chosen

driver model. The corresponding template in the

internal library is appropriately tailored during

code generation. For the DPS and RTS

mentioned earlier, the device_read feature is

directly mapped to the read API of the character

driver model[7] in Linux. All explicit features

are translated to C functions

 DDGEN generates the ISR routine based on the

interrupt_spec in DPS and ISR_spec in

the RTS. For the interrupt_spec given in

figure(5), the tool automatically infers that the

interrupt has to be serviced by the corresponding

read API. The ISR is then generated accordingly.

The synchronization code between the ISR and

main driver thread is generated based on the

ISR_DRIVER_SYNC field in the ISR spec of

RTS.

3.4 Software Space Exploration using RTS

Conventional method of device driver writing is often

iterative. The programmer takes certain design

decisions and implements the driver – typically in C.

Once the working code is obtained, the driver

undergoes several refinements to meet various

criteria. For example, an audio driver initially

implemented using a ping-pong buffer might have to

be modified to use a circular linked-list. Similarly, a

read API initially implemented as a blocking call

might need to be modified to a non-blocking call.

Each such change involves direct modification to the

C code itself.

We term the above process as Software Space

Exploration. This exploration can be very effectively

and efficiently done using RTS. The RTS is

analogous to a low-level design document. A change

in a design decision essentially means changing the

value of a relevant attribute in the RTS. The driver

can then be re-generated using DDGEN.

ISR_SPEC {

 ISR_NO = 7;

 ISR_DRIVER_SYNC = SEMAPHORE;

 ISR_TYPE = SPLIT;

}

 IP-ESC'09 Conference – December 1-3, 2009 6

4. Results

The table below shows the results of DDGEN

evaluation at one of our customer sites. DDGEN was

used for generating drivers for various peripherals

like DMA controller, Interrupt controller, Event

handler, Clock distribution unit:

Activity Effort in person days

Writing DPS/RTS 19

Integrated and testing

generated driver in the

target environment

12

Total effort using

DDGEN

31

Total Effort for manual

driver generation

90

Thus DDGEN methodology for generating drivers

resulted in almost 300% productivity improvement.

Note that porting the same drivers to a different

operating system involves making the relevant

changes in RTS and using DDGEN to generate the

drivers for that particular target operating system.

5. Conclusion and Future Work

Traditionally, Device driver writing is highly error-

prone, cumbersome and time-consuming due to a

variety of reasons like very strict schedule, informal

communication between the hardware and the

software teams and a plethora of operating systems.

DDGEN methodology formally captures the device

specifications in DPS and the software architecture in

RTS. The tool automatically generates complete

device driver code in C thus improving productivity

and alleviating the problems discussed earlier.

Our future work involves designing of suitable

optimization knobs in RTS such that the DDGEN

synthesis engine can be influenced to generate code

which is optimized for performance and/or size. DPS

is a proprietary DSL thus inhibiting its wide-spread

adoption. We‟re working on adopting IPXACT[2] as

the device specification mechanism. IPXACT

currently allows capture of the register information

only. Our work involves designing of suitable vendor

extensions for mapping all other DPS specifications

in IPXACT. The current library of code generation

templates has been designed based on our vast

domain expertise and experience. In future we would

like to evolve a methodology for any customer

specific template to be imported in the tool as well.

8. Acknowledgements

We would like to acknowledge the contribution of all

the DDGEN product team members in various

activities, right from conceptualization to

implementation, testing, benchmarking and several

enhancements that they continue to incorporate.

9. References

 [1]J. Sun, W. Yuan et al. HAIL: A Language for

Easy and Correct Device Access

[2]Spirit Consortium IPXACT 1.4 specification.

Website: http://www.spiritconsortium.org

 [3]Bitwise Register Management:

http://www.duolog.com

 [4]S. Wang, S. Malik, R. Bergamaschi: Modeling

and Integration of Peripheral Devices in Embedded

Systems

[5]F. Merillon, Laurent Reveillere: Devil: An IDL

for Hardware Programming

[6]S. Thibault, R Marlet, C. Consel: A Domain

Specific Language for Video Device Drivers

[7]Jonathan Corbet et al: Linux Device Drivers.

[8] The BSP was created as a part of an internal

porting project.

[9] http://msdn.microsoft.com/en-

us/library/aa923899.aspx

[10] Linux Platform Drivers:

http://lxr.linux.no/linux+v2.6.29/Documentation/driv

er-model/platform.txt

http://www.spiritconsortium.org/
http://msdn.microsoft.com/en-us/library/aa923899.aspx
http://msdn.microsoft.com/en-us/library/aa923899.aspx
http://lxr.linux.no/linux+v2.6.29/Documentation/driver-model/platform.txt
http://lxr.linux.no/linux+v2.6.29/Documentation/driver-model/platform.txt

